## Fast Maths Facts -Year 5 - Autumn 1



I know the multiplication and division facts for all times tables up to  $12 \times 12$ .

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

## Key Vocabulary

What is 12 multiplied by 6?

What is 7 times 8?

What is 84 divided by 7?

They should be able to answer these questions in any order, including missing number questions e.g.  $7 \times \underline{\hspace{1cm}} = 28$  or  $\underline{\hspace{1cm}} \div 6 = 7$ .

### <u>Advice</u>

The secret to success is practising **little** and **often**. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact family of the day.

<u>Speed Challenge</u> - Take two packs of playing cards and remove the kings. Turn over two cards and ask your child to multiply the numbers together (Ace = 1, Jack = 11, Queen = 12). How many questions can they answer correctly in 2 minutes? Practise regularly and see if they can beat their high score.



# Fast Maths Facts -Year 5 - Autumn 2

I can recall square numbers up to 12° and their square roots.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

| $ 1^{2} = 1 \times 1 = 1  2^{2} = 2 \times 2 = 4  3^{2} = 3 \times 3 = 9  4^{2} = 4 \times 4 = 16  5^{2} = 5 \times 5 = 25  6^{2} = 6 \times 6 = 36  7^{2} = 7 \times 7 = 49  8^{2} = 8 \times 8 = 64  9^{2} = 9 \times 9 = 81  10^{2} = 10 \times 10 = 100  11^{2} = 11 \times 11 = 121  12^{2} = 12 \times 12 = 144 $ $ \sqrt{1} = 1  \sqrt{4} = 2  \sqrt{9} = 3  \sqrt{16} = 4  \sqrt{25} = 5  \sqrt{36} = 6  \sqrt{49} = 7  \sqrt{64} = 8  \sqrt{81} = 9  \sqrt{100} = 10  \sqrt{121} = 11 $ |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2^{2} = 2 \times 2 = 4$ $3^{2} = 3 \times 3 = 9$ $4^{2} = 4 \times 4 = 16$ $5^{2} = 5 \times 5 = 25$ $6^{2} = 6 \times 6 = 36$ $7^{2} = 7 \times 7 = 49$ $8^{2} = 8 \times 8 = 64$ $9^{2} = 9 \times 9 = 81$ $10^{2} = 10 \times 10 = 100$ $11^{2} = 11 \times 11 = 121$ | $\sqrt{4} = 2$ $\sqrt{9} = 3$ $\sqrt{16} = 4$ $\sqrt{25} = 5$ $\sqrt{36} = 6$ $\sqrt{49} = 7$ $\sqrt{64} = 8$ $\sqrt{81} = 9$ $\sqrt{100} = 10$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | T                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | 14.44                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | ./1// 17                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | 1/1/1/ - 12                                                                                                                                     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                           | $\sqrt{144} = 12$                                                                                                                               |
| $\sqrt{144}$ 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                           | $v_{144} = 17$                                                                                                                                  |
| $\sqrt{144} = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           | V 144 - 12                                                                                                                                      |
| $\sqrt{144} = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           | •                                                                                                                                               |
| $\sqrt{144} = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |
| $\sqrt{144} = 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |                                                                                                                                                 |

## Key Vocabulary

What is 8 squared?

What is 7 multiplied by itself?

What is the square root of 144?

Is 81 a square number?

Children should also be able to recognise whether a number below 150 is a square number or not.

### Advice

The secret to success is practising little and often. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

<u>Cycling Squares</u> - At http://nrich.maths.org/1151 there is a challenge involving square numbers. Can you complete the challenge and then create your own examples?



# Fast Maths Facts -Year 5 - Spring 1

I can find factor pairs of a number.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**.

Children should now know all multiplication and division facts up to 12 × 12. When given a number in one of these times tables, they should be able to state a factor pair which multiply to make this number. Below are some examples:

| $24 = 4 \times 6$ | $42 = 6 \times 7$ |
|-------------------|-------------------|
| 24 = 8 × 3        | 25 = 5 × 5        |
| 56 = 7 × 8        | 84 = 7 × 12       |
| $54 = 9 \times 6$ | 15 = 5 x 3        |

## Key Vocabulary

Can you find a factor of 28?

Find two numbers whose product is 20.

I know that 6 is a factor of 72 because 6 multiplied by 12 equals 72.

### <u>Advice</u>

The secret to success is practising little and often. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

<u>Think of the question</u> - One player thinks of a times table question (e.g.  $4 \times 12$ ) and states the answer. The other player has to guess the original question.



# Fast Maths Facts - Year 5 - Spring 2

### I know decimal number bonds to 1 and 10.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

| Some<br>examples: |                |
|-------------------|----------------|
| 0.6 + 0.4 = 1     | 3.7 + 6.3 = 10 |
| 0.4 + 0.6 = 1     | 6.3 + 3.7 = 10 |
| 1 - 0.4 = 0.6     | 10 - 6.3 = 3.7 |
| 1- 0.6 = 0.4      | 10 - 3.7 = 6.3 |
| 0.75 + 0.25 = 1   | 4.8 + 5.2 = 10 |
| 0.25 + 0.75 = 1   | 5.2 + 4.8 = 10 |
| 1 - 0.25 = 0.75   | 10 - 5.2 = 4.8 |
| 1 - 0.75 = 0.25   | 10 - 4.8 = 5.2 |

## Key Vocabulary

What do I add to 0.8 to make 1?

What is 1 take away 0.06?

What is 1.3 less than 10?

How many more than 9.8 is 10?

What is the difference between 0.92 and 10?

### Advice

The secret to success is practising little and often. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

Buy one get three free - If your child knows one fact (e.g. 8 + 5 = 13), can they tell you the other three facts in the same fact family?

Use number bonds to 10 - How can number bonds to 10 help you work out number bonds to 100?



# Fast Maths Facts -Year 5 - Summer 1

I can identify prime numbers up to 20.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts **instantly**.

A prime number is a number with no factors other than itself and one.

The following numbers are prime numbers: 2, 3, 5, 7, 11, 13, 17, 19

A composite number is divisible by a number other than 1 or itself.

The following numbers are composite numbers:

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20

Key Vocabulary

prime number

composite number

factor

multiple

Children should be able to explain how they know that a number is composite.

E.g. 15 is composite because it is a multiple or 3 and 5.

### <u>Advice</u>

The secret to success is practising **little** and **often**. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

It's really important that your child uses mathematical vocabulary accurately. Choose a number between 2 and 20. How many correct statements can your child make about this number using the vocabulary above?

Make a set of cards for the numbers from 2 to 20. How quickly can your child sort these into prime and composite numbers? How many even prime numbers can they find? How many odd composite number



# Fast Maths Facts -Year 5 - Summer 2

### I can recall metric conversions.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

1 kilogram = 1000 grams

1 kilometre = 1000 metres

1 metre = 100 centimetres

1 metre = 1000 millimetres

1 centimetre = 10 millimetres

1 litre = 1000 millilitres

They should also be able to apply these facts to answer questions.

e.g. How many metres n  $1\frac{1}{2}$  km?

### <u>Advice</u>

The secret to success is practising little and often. Use time wisely. Can you practise these Super Facts while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

<u>Look at the prefixes</u> - Can your child work out the meanings of *kilo-*, *centi-* and *milli-*? What other words begin with these prefixes?

Be practical - Do some baking and convert the measurements in the recipe.

<u>How far?</u> - Calculate some distances using unusual measurements. How tall is your child in mm? How far away is London in metres?